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Introduction
The automotive parts supply chain is unique and complex. Operating in parallel to the vehicle 
manufacturing supply chain, it is designed to support vehicles with both local and imported parts 
throughout their full life cycle, both as a current production model, as well as after the vehicle’s 
production period. The supply chain needs to ensure parts are available to service vehicles, repair 
mechanical failures and damages, and perform vehicle enhancement. Demand for service parts 
tends to be predictable, but still exhibits significant demand variance (high average demand and 
high variance). Demand for parts to repair mechanical failures and damages is highly variable 
and erratic (low average demand and high variance). Performance of the automotive parts supply 

Background: The automotive parts supply chain measures its success in terms of parts 
availability and stock required to achieve the availability target, measured as allocation fill rate 
(AFR). The supply chain strives to achieve an AFR target of 95.5% while maintaining low 
levels of stock.

Objective: The first objective of this study is to evaluate the current inventory management 
approach, namely the maximum inventory position (MIP) method, to understand the 
difference between the theoretical derivation and the actual implementation. The second 
objective is to develop and compare the performance of a new stock target setting (STS) 
method relative to the MIP methods.

Method: The theoretical and actual equations behind the MIP and STS methods are derived 
for steady state as well as stochastic conditions. A system dynamics simulation model (SDSM) 
was developed to describe both the local and imported supply chains. The SDSM was used to 
simulate and confirm the parameters for the STS method. It was also used to compare the three 
inventory management methods against a theoretical environment and actual data sets.

Results: The STS method requires a damping factor (DF) to ensure it does not cause the 
bullwhip effect. The SDSM was used to determine that a value equal to the lead time ensures 
effective damping. In the theoretical environment, the MIPTheory method requires the lowest 
stock, but also has the lowest AFR. MIPActual achieves the highest AFR, but with significantly 
higher stock holding. The STS method improves on the AFR achieved by the MIPTheory method, 
with lower stock holding than the MIPActual method. With the actual demand data sets, the 
results vary by parts movement type. With fast moving parts, all methods achieve the AFR 
target, the MIPActual method has a higher stock holding for all cases, and the STS method results 
in reduced stock holding for 7 of 12 cases. With medium moving parts, the MIPActual method 
improves on the AFR in all 15 cases, but with significantly higher stock. The STS method 
increases the AFR in 7 of 15 cases and reduces the stockholding in 11 of 15 cases. With slow 
moving parts, both the MIPActual and STS methods improve the AFR with increased stock 
holding. The increase in stock holding for the STS method is significantly lower. With erratic 
moving parts, the MIPActual method improves on the AFR in all 17 cases, but requires significantly 
higher stock holding. The STS method achieves lower AFR values in 10 of 17 cases, but also 
requires lower or equal stock holding in 10 of 17 cases.

Conclusion: The STS method provides a new approach to inventory management in the 
automotive supply chain. It provides improved performance for lower stock holding than the 
implemented MIP method (MIPActual). The results for the different movement category suggest 
that there is further research to be done to confirm the effectiveness of the various methods 
with other demand distributions.
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chain is not driven by cost, but rather by availability of a 
wide variety of parts. The objective of inventory optimisation 
is to maximise the parts availability while minimising the 
number of pieces in stock. The automotive industry focuses 
on just in time (JIT) or lean manufacturing, and the economic 
order quantity ordering method is not used. A standard 
method applied in the industry is the so-called maximum 
inventory position (MIP) method. The MIP method considers 
both the stock on hand at the distribution centre and the 
stock on order to calculate new orders.

The most fundamental issue in supply chain management is 
service to the customer. Holweg and Pil (2001) supported 
build-to-order supply chains, whereas Gattorna (2010) used 
segmentation to identify alternative supply chain designs to 
maximise customer service by segment. The guaranteed 
service (GS) model developed by Humair and Willems (2006) 
requires that each node in the supply chain network promises 
100% delivery to the customer within the promised lead time. 
Based on this model, the placement of safety stock throughout 
the supply chain network can be calculated using a multi-
echelon approach. Bossert and Willems (2007) and Neale and 
Willems (2009) investigated the implications of the GS model 
for various demand conditions. Humair and Willems (2006, 
2011) and Graves and Willems (2008) developed improved 
methods to solve the GS model algorithm to optimise the 
location of safety stock throughout the supply chain. Case 
studies applying the GS model are provided by Billington 
et  al. (2004), Farasyn et al. (2011), Wieland et al. (2012) and 
Manary and Willems (2008). Owing to the mix of parts in the 
automotive supply chain, as mentioned earlier, it is not 
possible to maintain a 100% GS rate. Based on the parts 
demand mix, the target is arbitrarily set at a 95.5% service rate.

JIT manufacturing has had a positive impact for many firms 
(Lambert 2008). By reducing waste, costs are reduced and 
profitability increased. Lambert (2008) provided an overview 
of JIT thinking in the supply chain management space. 
The concept of ‘waste’ is extended to include waste specific 
to the supply chain, such as ineffective coordination and 
misalignment across functions. One of the key wastes 
identified in the Toyota Production System is the waste of 
overproduction (Shingo 1981). Reducing overproduction 
waste simply translates to only producing what is required. 
In parts supply, this translates to placing daily orders based 
on daily sales.

Patterson, Fredenhall and Kennedy (2002) focused on the 
spare parts supply chain, indicating that supply chain models 
should assist the practitioner to decide: When to place the 
order, how much to order and the impact of cost versus 
availability. Van der Heijden, Van Harten and De Smidt-
Destombes (2009) and Van der Heijden, Van Harten and De 
Smidt-Destombes (2006) analysed the problem of spare parts 
supply in the defence systems environment where both spare 
and repair parts supply are taken into account.

A number of authors proposed the use of simulation to 
analyse and optimise supply chains. Sahay and Ierapetriou 

(2013) evaluated the interaction between simulation and 
optimisation requiring an active feedback loop between 
each  solution. Umeda and Zhang (2008) applied a hybrid 
of discrete simulation, control models and system dynamics 
to solve supply chain problems. Tako and Robinson (2012) 
applied a combination of discrete event simulation and 
system dynamics to the supply chain. Angerhofer and 
Angelides (2000) and Akkermans and Dellaert (2005) 
provided extensive overviews of the use of system dynamics 
for addressing supply chain issues. System dynamics has 
been applied in many industries to evaluate and solve supply 
chain issues. Vlachos, Georgiadis and Iakovou (2007) applied 
system dynamics simulation for capacity planning in a 
closed-loop supply chain; Canella et al. (2015) focused on a 
coordinated decentralised supply chain, whereas Minegishi 
and Thiel (2000) and Georgiadis, Vlachos and Iakovou (2005) 
focused on applying system dynamics simulation in the food 
supply chain. Huang et al. (2007) applied system dynamics 
simulation to a so-called constant work in process controlled 
supply chain for lamps. In this article, system dynamics is 
applied to the automotive parts supply chain that operates 
according to a JIT approach. The purpose of this study is to 
evaluate three alternative inventory management strategies 
to achieve or exceed the allocation fill rate (AFR) target, while 
minimising the total number of pieces stored, using a system 
dynamics simulation model.

Problem description
The automotive parts supply chain has two key performance 
metrics, namely:

•	 AFR measuring the availability of parts when orders are 
placed.

•	 Pieces of stock in inventory consisting of many different 
parts (automotive parts stock keeping units) stored in 
sufficient quantities to support demand and demand 
variance.

The second metric is required because of space constraints. 
Parts can be small or large in size with low or high quantities 
of pieces stored as per individual part demand. Given the 
number of different sizes and quantities, it is not feasible to 
consider individual part space requirements, but with the 
total volume. A single inventory management model is, 
therefore, used for all parts.

Because applying system dynamics to supply chain research 
is ongoing, the objective of the study is to understand and 
improve on inventory management in the automotive parts 
business, where different demand patterns exist and supply 
rate is critical. Additional complexity in the industry is that 
space is a constraint and the bullwhip effect (Forrester 1958) 
is difficult to address in a practical manner. The bullwhip 
effect is widely described. Bhattacharya and Bandyopadhyay 
(2011) reviewed the various causes of the bullwhip effect 
and  included aspects such as lead time and stock ordering 
policy. Wikner, Towil and Naim (1991) discussed a number 
of possible solutions for reducing the bullwhip effect.
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Research methodology
The first activity is a detailed analysis of the theoretical base 
of the inventory management methods. Secondly, the three 
proposed inventory management models are compared with 
each other in a theoretical environment, using a system 
dynamics simulation model (SDSM). The theoretical analysis 
is done using a similar demand distribution. The simulation 
is run 50 times to ensure statistical significance and reduce 
bias. Each simulation run is 500 time units in length. This 
makes it possible to remove 200 time units to ensure that 
the model has stabilised and results from the stable period 
are used. Finally, the SDSM is used to analyse two sets of 
actual demand data. The data sets are a random selection 
of  part numbers, ordered by all dealers in the network, 
made available for the study. Three inventory management 
methods are investigated. A theoretical derivation of the 
concept of a pipeline-based inventory method is used. This is 
compared to the method in practical use. The method in use 
results in high parts availability with high stock holding. The 
third method is a new development to improve performance 
while maintaining a lower stockholding.

The two data sets used for practical comparison of the 
methods covered 9 months of actual orders placed for all 
parts by approximately 200 dealers in the dealer network 
under consideration. A representative sample of the data is 
used, including different movement types and sources.

During the simulation runs, the initial data are discarded, as 
is normal with simulations. This allows stocks to build up 
and dynamics to stabilise (Sterman 2000). The theoretical 
environment is used to validate and verify the SDSM model.

Inventory optimisation models
For the purposes of this study, the focus will be on a 
centralised stock model, with limited use stock at dealerships 
and all safety stock at the distribution centre.

In a JIT supply chain, a philosophy of sell-one-buy-one is 
applied. This philosophy implies that the ideal order quantity 
is one, ordered as soon as an item is sold. This approach 
differs from the traditional JIT in production where 
production is kept constant.

Therefore:

Reorder Point = R = 1� [Eqn 1]

Reorder Quantity = Q = D� [Eqn 2]

where D is the constant daily demand.

Pipeline stock (SP) can be seen as all stock that has been 
ordered and not yet sold:

Sp = SOH + SOO� [Eqn 3]

where SOH is the stock on hand and SOO is the stock on order.

This means that if sales are set to zero, inventory will only 
build up to this level and no more. Therefore:

MIPTheory = Sp = SOH + SOO� [Eqn 4]

And:

SOH = DR = D� [Eqn 5]

SOO = QL = DL� [Eqn 6]

where L is the lead time.

Therefore:

MIPTheory = D + DL = D(1+L)� [Eqn 7]

Up to this point, it was assumed that D is constant and that 
there will always be sufficient stock. In a real environment, 
demand will be random or stochastic. Therefore, it can be 
stated that D is a continuous random variable representing 
daily demand, μ is the average value of E(D) and σ is the 
standard deviation of E(D).

D will have a probability density function, namely:

D = f (x)� [Eqn 8]

It is also likely that lead time will be random, giving: H is a 
continuous random variable representing daily demand, μ2 
is the average value of E(H ) and σ2 is the standard deviation 
of E(H ).

H will have a probability density function, namely:

H = f(y)� [Eqn 9]

Given this, the constant demand equations can be expanded 
to:

SOH = µ(L+R) + SSD� [Eqn 10]

where SSD is the safety stock for demand variance:

SOO = ∑Q = (µ2 + SSLT)µ� [Eqn 11]

where SSLT is the safety stock for lead time variance.

Therefore:

MIPTheory = �µ(L + R) + SSD + µ(µ2 + SSLT) = µ(L + R + µ2 + SSLT) + 
SSD� [Eqn 12]

If ƒ(x) and ƒ(y) are normal distributions, we can define the 
safety stock in terms of the service level to be achieved. To 
achieve 95% service level, the safety stocks will be:

http://www.jtscm.co.za
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SSD = 2σR� [Eqn 13]

SSLT = 2σ2� [Eqn 14]

Therefore:

MIPTheory = µ(L + R + µ2 + 2σ2) + 2σR� [Eqn 15]

This leads to:

Q = �MIPTheory - (SOH + SOO) + BO = µ(L + R + µ2 + 2σ2) + 2σR -  
(SOH + SOO) + BO� [Eqn 16]

where BO is the backorders.

Backorders are treated outside of standard operation and are 
excluded from the base order. Toyota (2003) described the 
implemented equation set in use as:

MIPPractical = MAD(OC + L + SSLT + SSD)� [Eqn 17]

SOQ = MAD(OC + L + SSLT + SSD) - (SOH + SOO) + BO� [Eqn 18]

where SOQ = Q = stock order quantity, MAD = monthly 
average demand – 6 months moving average and OC = order 
cycle = R.

MAD is calculated using a 6-month average demand to 
smooth day-to-day demand fluctuations and accommodate 
seasonal behaviour (Toyota 2003). The values for safety stock 
are calculated by the inventory management system.

If Equations 16 and 18 are compared, there is a distinct 
difference in the way the order quantity Q is determined. 
The  main difference is the calculation of safety stock for 
demand – SSD. In the theoretical derivation (Equation 16), the 
safety stock for demand takes the demand variance for the 
reorder period into account. With daily order placement, 
this means that the safety stock for demand is equal to the 
demand variance multiplied by the factor (n) associated with 
a specific service level. This means that both the terms of the 
equation are consistent in their dimensions (pieces × time). 
In the practical application (Equation 18), the safety stock for 
demand is included in a single term with safety stock for 
lead time. Both the factors are multiplied by the demand, 
resulting in a term that does not have a dimensional 
consistency (pieces × pieces + pieces × time). It is postulated 
that the practical solution is an attempt to improve the 
stock  availability. The result of using Equation 18 would 
be  an increase in service level, but it would also increase 
stockholding significantly.

As an alternative to the MIP method, this article proposes the 
stock target setting (STS) method. The MIP method focuses 
on stock in the complete pipeline (SOH and SOO), but does not 
specify location at which safety stock needs to be held. As 
long as the total stock in the system is equal to the MIP, no 
additional action is taken. The proposed STS method will 

focus on stock on hand. It will set a target for the stock on 
hand, which will include safety stock for demand and lead 
time variance, and focus on ensuring that this target stock 
level is maintained. In the STS method developed for this 
article, one of the key activities is to ensure that the STS 
decision algorithm will not be the cause of the bullwhip 
effect. With the variance shown in the demand data, the 
bullwhip effect is evident even in the single stockholding 
environment under review.

In the STS method, two equations are required. Firstly, the 
order to be placed needs to be calculated:

Q = (D – BO) + (TS – SOH)/DF� [Eqn 19]

where TS is the stock target and DF is the damping factor.

Similar to the MIPTheory and MIPActual methods, backorders will 
be treated as having a secondary supply approach and they 
can therefore be subtracted from the demand. Any correction 
in the (TS – SOH) term should result in the bullwhip effect 
unless the DF is included.

The second equation focuses on how to set the target stock 
level:

TS = (Delivery Cycle)D� [Eqn 20]

As shown here, Equation 20 assumes stable demand and can 
once again be expanded to compensate for stochastic 
conditions, resulting in:

TS = (Delivery Cycle + 2σ2)(D + 2σ)� [Eqn 21]

System dynamics simulation model
An SDSM is used to compare the theoretical MIPTheory method, 
practical MIPActual method and proposed STS method using 
AFR and the number of pieces of inventory carried as 
measure. The SDSM makes it possible to use both a set of 
theoretical conditions and real data to compare the three 
methods. The SDSM reflects both imported and local 
suppliers, with the appropriate parameters.

The model was deliberately designed to separate information 
and physical flows, which have in the past been simulated as 
single flows, resulting in outcomes that have to be questioned. 
Examples include Torres and Morán (2006) and Sterman 
(2000:669). If the limitations in design and application domain 
are not fully understood, such models can provide misleading 
results.

The basic supply chain starts with the receipt of an order. If 
there is stock, the order is supplied and the stock adjusted. The 
inventory system will validate the received order against the 
system information. If the stock is available according to 
the inventory management system, the stock is allocated on 
the system. The order is then supplied from the physical stock, 
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with a delay resulting from the process of supply. Once the 
order has been confirmed as supplied, the system stock is 
adjusted. The inventory management system will calculate 
and place an order on the supplier. If there is no stock available, 
the inventory management system will automatically create 
a  backorder and place a priority order on the supplier. 
The  supplier has a specific lead time after which the order 
reaches the receiving process. As orders are supplied from the 
supplier, the receiving process places the physical stock and 
updates the system stock. If the system has stock to allocate, 
the AFR score is one else it is zero. This provides a cumulative 
score of how many orders can be satisfied from system stock. 
A causal loop diagram of the supply chain management 
system, including feedback loops, is shown in Figure 1.

SDSM is constructed using a language of stock and flows 
to represent the series of differential equations that make up 
the model description. The simulation language used for this 
model is iThink® from iseesystems Inc. iThink® is one of a 
number of object-orientated simulation languages specifically 
designed to develop SDSM. The problem investigated will 
be split into two main areas, namely: import suppliers and 
local suppliers. Imported parts suppliers receive and process 
orders daily, but ship weekly with an order lead time of 
63  days, whereas local part suppliers ship daily with lead 
times of either 7 days or 28 days (Table 1).

The scope of the SDSM is limited to a two-tier supply chain. 
Parts are ordered by dealers (dealer demand) and supplied 

from a distribution centre. The distribution centre then places 
an order on the supplier to supply within the agreed lead time. 
The focus of the analysis is the decision algorithm used at 
the distribution centre. Two simulation models were built. The 
first model is used to analyse the performance of the supply 
chain for imported parts, and the second is to analyse the 
performance of the supply chain for local parts. The models 
are used for both the theoretical analysis and the case study, 
where real order data will be analysed. The major difference 
between the two models is the shipping cycle. In the local 
environment, orders are placed daily and delivered daily 
with a 7-day lead time. In the import model, orders are placed 
daily, parts are picked daily, but shipping only occurs every 
7th day, with a 63-day lead time from the day of shipping.

The structure of the model focuses on three parallel flow 
systems, namely: (1) physical flow of parts, (2) information 
flow and (3) backorder flow. The physical flow of parts 
describes the dispatch of parts from the supplier as well as 
the distribution centre. The backorder flow also reflects a 
physical flow and is required as backorders are treated 
separately in an attempt to limit the bullwhip effect. The 
information flow is required to manage data to support the 
order algorithm and the calculation of the AFR. The stock 
availability will be extracted directly from the physical parts 
flow section of the model.

There are a number of key simplifications and assumptions 
made in the model. The fundamental assumptions are as 
follows:

•	 Suppliers have sufficient capacity to accommodate the 
orders placed.

•	 Orders are placed to the supplier system on a continuous 
basis.

•	 Initial stock in the physical system will be allocated using 
lead time and demand.

•	 L and D can be set as a constant or as a distribution 
function.

•	 BO lead time is fixed.

Both models will be used to test the three different order 
algorithms under investigation. The theoretical and actual 
implementation of the MIP models are virtually identical, 
with only the order algorithm being different as shown in 
Equations 16 and 18. The STS method will require TS to be 
determined.

Appendix 1 shows the import supplier model as a set up for 
the MIP algorithms. The domestic model does not include the 
order accumulation structure. It is necessary to include the 
imported supplier structure as this adds an additional 
dimension to the process time variance in that although 
orders are placed daily, they are only shipped once a week.

Results and discussion
All SDSMs were run for 500 periods and repeated 50 times. 
The first 200 data points were removed to allow the model 

Receive Order

Allocate System
Stock

Supply

Stock Months

Physical Stock

Backorder

AFR

System Stock

Supplier Order

Receiving
Process

Supplier Lead
Time

FIGURE 1: Comprehensive view of the supply chain, including supplier.

TABLE 1: Differences in factors for local and imported parts suppliers.
Factor Local parts supplier Imported parts supplier

Supply lead time 7 days for current model and high 
volume past model parts, 28 days 
for past model parts

63 days for all parts

Shipping cycle Daily shipping Pick daily but consolidate 
weekly for shipping

BO Normal shipping Can be sent by airfreight 
(7 – 14 days)

Source: Toyota Parts Business Report 2015, Internal Report prepared by Customer Service 
Division
BO, backorders.
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time to stabilise. All comparisons will be based on the AFR 
and physical pieces of stock in inventory. Although sufficient 
stock must be kept to ensure that the AFR remains high, high 
stock levels with a low AFR is unacceptable. Low stock levels 
and a high AFR are ideal.

The first simulation was used to establish the DF required 
for the most effective operation of the STS method. It is 
postulated that DF can be used to reduce the demand 
amplification in the supply chain. A demand data stream 
was generated using a normal distribution with an average 
demand of 100 units per day and a standard deviation of 
10. In each case, a series of DFs were selected, starting at 1 
day and ending at the specific L. Using a DF equal to the 
specific L provides the most effective AFR and stock 
position (Table 2).

When DF is set to 1 for imported supplier parts, the stock 
value overshadows the results for other values of DF 

(Figure 2a and c). Removing DF equal to 1 clearly shows 
how increasing DF results in a smoothing of the daily stock 
holding (Figure 2b and d). Once DF reaches the lead time of 
63 days, the improvements are minimal.

Increasing the DF for domestic suppliers producing 
parts  with a 7-day lead time reduces the bullwhip effect 
by  reducing stock and increasing AFR (Figure 3).

Increasing the DF for domestic suppliers producing parts 
with a 28-day lead time shows results similar (increased 
stock) to the import model when DF is equal to 1 (Figure 4a 
and b). When DF equal to 1 is removed, the reduction in the 
bullwhip effect can be seen clearly, with the best results when 
DF equals L (Figure 4c).

The results indicate that the ideal DF can be set equal to 
L.  For simplicity, all further STSM analysis will use a 
DF equal to L.

TABLE 2: Allocation fill rate and stock results simulation of damping factor analysis for the stock target setting method for imported and domestic supplier.
Supplier Damping factor

1 day 3 days 7 days 7 days  
(lead time)

14 days 15 days 28 days  
(lead time)

30 days 63 days  
(lead time)

70 days (lead time + 
shipping cycle)

Import supplier
 Average AFR 90.6 - - - - 84.6 - 98.5 99.9 99.9
 Average stock 21 195.0 - - - - 861.0 - 815.0 761.0 755.0
Domestic supplier – current
 Average AFR 76.9 93.2 - 100.0 - - - - - -
 Average stock 177.0 120.0 - 120.0 - - - - - -
Domestic supplier – past
 Average AFR 60.3 - 93.5 - 99.2 - 100.0 - - -
 Average stock 249.0 - 123.0 - 119 - 121.0 - - -

AFR, allocation fill rate.
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FIGURE 2: Impact of the damping factor on import supplier supply chain, where (a and c) damping factor is set to 1 for imported supplier parts and (b and d) removing 
damping factor equal to 1.
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Next, the three methods will be compared using a 
theoretical environment of demand and demand variance. 
In the theoretical environment, a demand data stream is 
generated using a normal distribution with an average 
demand of 100 units per day and a standard deviation 
of 10.

In the theoretical environment, the MIPTheory method requires 
the lowest stock amounts, but also results in the lowest AFR. 
In contrast, the MIPActual method results in the highest AFR, 

but also significantly higher stock amounts (Table 3 and 
Figure 5). The improved AFR would confirm the reasoning 
behind the way the method is implemented. Given that 
customer service is more important, the calculation was 
adapted to allow for a better AFR. The unintended 
consequence of this was that stock holding has been increased 
significantly. The STS method provides a similar AFR than 
the MIPActual method (identical in two of three cases) with 
significantly less stock required.

From the above results, it is clear that in the case of the local 
supply chains, the STS method has merits as a replacement 
method that will increase the AFR, but will require less stock 
than the MIPActual method.

The final comparison between the three order placement 
algorithms will focus on two selected data sets. Data set one 
represents the demand for fast moving parts, and data set 
two represents the demand for erratic moving parts.

The data sets consist of the following:

•	 Fast (daily) moving imported parts.
•	 Medium (weekly) and slow (monthly) moving import 

parts.
•	 Slow (monthly) moving local parts.
•	 Erratic (one sale in 6 months) moving local parts.

Running the simulation for the fast moving parts, in all cases, 
for all three methods, results in 100% AFR. In 8 of 12 parts 
investigated, the STS method required lower stock levels. In 
all cases, the MIPActual method required significant higher 
stock levels (Table 4).

Running the simulation for medium and slow moving 
imported parts shows that in all cases, the MIPActual method 
resulted in a 100% AFR, with increased stock holding. The 
STS method showed an improvement in AFR in 1 of 15 cases 
and a reduction in 8 of 15 cases. The stock holding increase 
for the improved AFR was lower than the MIPActual method. In 
11 of 15 cases, the stock holding required was lower than the 
MIPTheory method. Of these, four parts achieved the same or 
better AFR with lower stock holding. The results show that 
the MIPActual method improves the AFR, but at a significant 
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FIGURE 3: (a and b) Impact of the damping factor on a current model domestic supplier supply chain.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 50 100 150 200 250 300

Al
lo

ca
�o

n 
Fi

ll 
Ra

te

Stock

DF = 1

DF = 14

DF = 21
DF = 28

DF = 7

a

0

200

400

600

800

1000

20
1

21
4

22
7

24
0

25
3

26
6

27
9

29
2

30
5

31
8

33
1

34
4

35
7

37
0

38
3

39
6

40
9

42
2

43
5

44
8

46
1

47
4

48
7

St
oc

k

Time

Stock DF = 1
Stock DF = 7

Stock DF = 14
Stock DF = 28

b

0

50

100

150

200

20
1

21
4

22
7

24
0

25
3

26
6

27
9

29
2

30
5

31
8

33
1

34
4

35
7

37
0

38
3

39
6

40
9

42
2

43
5

44
8

46
1

47
4

48
7

St
oc

k

Time

Stock DF = 7 Stock DF = 14 Stock DF = 28 c

FIGURE 4: Impact of the damping factor on a past model local supplier supply 
chain where damping factor is (a and b) equal to 1 and (c) when damping factor 
equal to 1 is removed.

http://www.jtscm.co.za


Page 8 of 12 Original Research

http://www.jtscm.co.za Open Access

increase in stock holding. The STS and MIPTheory method 
achieves similar results with lower stock holding (Table 5).

Running the simulation for slow moving local parts shows 
that in all cases, the MIPActual method improves the AFR, but 
with stock holding increased by four times. The STS method 
also improves on the AFR in all cases. It also requires stock 
holding to be increased, but in only two cases is the stock 
required double that of the MIPTheory method. The results 
show that the STS method provides a better overall solution 
with increased AFR with the lowest stock holding (Table 6).

Running the simulation for erratic moving local parts shows 
that the MIPActual method improved the AFR in 15 of 16 cases, 
in all cases increasing the stock holding. In only three cases, 
the stock increase was less than double. In 7 of 16 cases, the 
STS method improved the AFR, whereas the other 9 cases 
resulted in a drop of AFR. In five cases, the stock holding was 
reduced. The results show that the MIPActual method would 
provide equivalent performance to the other methods, but 
with the lowest stock holding (Table 7).

Conclusion
In this article, four key issues were addressed. The theory 
behind the MIP method and how it is implemented was 
analysed. The difference between the theoretical and actual 
implementation was identified. An alternative STS method, 
focusing on stock targeting, was derived theoretically. An 
SDSM was developed to analyse the performance of the 
ordering algorithms on the supply chain. The SDSM is 
limited in that it does not simulate a unique demand for 
every part, but rather a demand distribution based on a fixed 

set of variables. The analysis of the actual data sets is limited 
in that actual stock holding data are not available, and 
therefore, the results cannot be compared to the actual 
situation. The STS method was analysed to confirm that it 
would not result in the bullwhip effect by evaluating the 
impact of damping on the supply chain performance. 
Following the analysis, the DF was set equal to L. The three 
order algorithms were compared in a theoretical environment. 
Under the theoretical demand distribution conditions, it was 
found that the MIPActual and STS algorithms increase the AFR. 
It was also shown that the MIPActual method requires 
significantly higher stock holding to provide the improved 
AFR values. In all cases, this was in excess of 10 times more 
than the STS method.

Two actual data sets were used to evaluate the effectiveness 
of the three algorithms in practice. The results indicate that 
except for the fast moving imported parts, the MIPTheory 
algorithm does not provide the ideal AFR. The MIPActual 
method improves on the AFR, but also results in a significant 
increase in stock holding required. The STS method, in 
general, provides an increase in the AFR, except for the 
erratic moving parts, with a lower increase in stock holding.

The results obtained at this point suggest that the STS 
method be further investigated as an alternative solution to 
the MIPActual method to ensure that the warehouse space 
constraint is managed effectively. The effectiveness of the 
three methods to ensure the target AFR is achieved with the 
least amount of stock against various theoretical demand 
patterns (log-normal or gamma distributions) should be 
investigated to determine if the methods are applicable to 
specific demand patterns.
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TABLE 3: Simulation results comparing the three order methods in a theoretical environment.
Model:  
algorithm

Import Local current Local past

MIP theory MIP actual Stock target MIP theory MIP actual Stock target MIP theory MIP actual Stock target

AFR (%) 99.78 100.00 99.85 99.85 100.00 100.00 99.75 100.00 100.00
Stock 339.00 2297.00 761.00 21.00 1999.00 120.00 30.00 2001.00 121.00
AFR change (%) - 0.22 0.07 - 0.15 0.15 - 0.25 0.25
Stock change - 6.80 2.20 - 93.20 5.60 - 66.30 4.00

AFR, allocation fill rate; MIP, maximum inventory position.
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FIGURE 5: Comparison of the three order methods in a theoretical environment.
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TABLE 6: Results of simulating actual demand data for slow moving local parts.
Part MIPT MIPA Improvement Stock target Improvement

AFR 
(%)

Avg  
stock

AFR  
(%)

Avg  
stock

AFR change 
(%)

Avg stock 
change

AFR  
(%)

Avg  
stock

AFR change  
(%)

Avg stock 
change

Part 01 78.92 60 82.12 700 3.20 640 79 64 0.21 4
Part 02 54.77 10 55.21 12 0.44 2 52 9 -2.76 -1
Part 03 22.53 279 23.04 3523 0.50 3244 22 266 -0.26 -13
Part 09 17.29 241 17.29 1757 0.00 1516 16 116 -0.96 -125
Part 10 9.58 36 9.83 56 0.26 21 10 153 0.26 118
Part 11 11.97 190 13.85 1203 1.88 1013 12 173 0.23 -17
Part 13 81.24 31 82.63 188 1.39 157 81 30 -0.52 0
Part 14 93.70 2733 96.78 2 057 466 3.08 2 054 733 94 4028 0.59 1295
Part 16 78.84 39 79.85 231 1.01 192 76 39 -2.77 0
Part 17 82.99 13 83.83 36 0.84 22 82 13 -1.16 0
Part 18 80.23 23 83.07 95 2.84 73 79 27 -1.47 5
Part 19 79.35 20 82.99 64 3.64 45 79 20 -0.42 0
Part 20 80.30 17 82.54 62 2.25 45 80 17 0.18 0
Part 21 63.17 10 63.37 14 0.20 4 61 6 -1.95 -4
Part 23 75.69 17 78.82 46 3.13 29 76 19 0.27 2
Part 29 93.29 3053 94.13 3 563 903 0.83 3 560 850 94 4308 0.31 1254
Part 31 91.93 673 93.41 122 691 1.48 122 018 91 800 -0.72 127

MIPT, MIPTheory; AFR, allocation fill rate; Avg, Average; MIPA, MIPActual.

TABLE 5: Results of simulating actual demand data for medium and slow moving import parts.
Part MIPT MIPA Improvement Stock target Improvement

AFR
(%)

Avg 
stock

AFR 
(%)

Avg 
stock

AFR change  
(%)

Avg stock 
change

AFR 
(%)

Avg
stock

AFR change  
(%)

Avg stock 
change

Part 1 100.00 695 100.00 2008 0.00 1312 100 609 0.00 -86
Part 2 100.00 1404 100.00 4366 0.00 2962 100 1332 0.00 -72
Part 3 99.54 195 100.00 559 0.46 364 96 169 -3.82 -26
Part 4 96.54 367 100.00 1282 3.46 915 95 446 -1.81 79
Part 5 99.51 304 100.00 907 0.49 603 96 248 -3.98 -56
Part 6 98.33 214 100.00 575 1.67 361 92 187 -6.09 -27
Part 7 99.10 234 100.00 641 0.90 407 100 332 0.90 98
Part 8 100.00 232 100.00 629 0.00 397 100 312 0.00 80
Part 9 97.38 246 100.00 694 2.62 448 95 198 -2.79 -48
Part 10 98.63 223 100.00 541 1.37 318 96 178 -2.43 -45
Part 11 100.00 657 100.00 1532 0.00 875 100 509 0.00 -147
Part 12 100.00 516 100.00 1448 0.00 933 100 483 0.00 -32
Part 13 98.52 262 100.00 661 1.48 399 98 339 -0.24 77
Part 14 95.46 317 100.00 844 4.54 527 95 241 -0.34 -76
Part 15 100.00 1064 100.00 3001 0.00 1937 100 875 0.00 -188

MIPT, MIPTheory; AFR, allocation fill rate; Avg, Average; MIPA, MIPActual.

TABLE 4: Results of simulating actual demand data for fast moving import parts.
Part MIPT MIPA Improvement Stock target Improvement

AFR  
(%)

Avg  
stock

AFR  
(%)

Avg  
stock

AFR  
change

Avg stock  
change

AFR  
(%)

Avg  
stock

AFR  
change

Avg stock  
change

Part 04 100.00 1028 100.00 4772 0 3744 100.00 932 0 -96
Part 05 100.00 1180 100.00 2546 0 1365 100.00 1408 0 228
Part 06 100.00 179 100.00 189 0 9 100.00 155 0 -25
Part 07 100.00 378 100.00 765 0 387 100.00 327 0 -51
Part 08 100.00 378 100.00 782 0 404 100.00 326 0 -51
Part 15 100.00 700 100.00 2961 0 2261 100.00 766 0 66
Part 12 100.00 1438 100.00 2621 0 1184 100.00 1650 0 213
Part 22 100.00 552 100.00 714 0 162 100.00 515 0 -37
Part 24 100.00 421 100.00 581 0 160 100.00 459 0 39
Part 25 100.00 4145 100.00 130 417 0 126 272 100.00 5217 0 1072
Part 26 100.00 963 100.00 1498 0 535 100.00 930 0 -33
Part 28 100.00 463 100.00 577 0 114 100.00 433 0 -30

MIPT, MIPTheory; AFR, allocation fill rate; Avg, Average; MIPA, MIPActual.
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TABLE 7: Results of simulating actual demand data for erratic moving local parts.
Part MIPT MIPA Improvement Stock Target Improvement

AFR (%) Avg stock AFR (%) Avg stock AFR change 
(%)

Avg stock 
change

AFR (%) Avg stock AFR change 
(%)

Avg stock 
change

Part 1 78.28 109 80.09 1326 1.81 1218 79.29 166 1.01 57
Part 2 84.81 55 87.39 518 2.58 463 86.73 96 1.93 41
Part 3 55.36 86 56.34 666 0.98 580 56.20 120 0.83 34
Part 4 81.26 47 84.09 471 2.83 423 83.79 92 2.53 45
Part 5 81.40 62 82.65 605 1.25 542 81.51 110 0.10 47
Part 6 77.83 62 82.44 563 4.61 501 80.22 114 2.39 51
Part 7 76.16 43 79.89 359 3.73 316 79.08 83 2.92 40
Part 8 84.45 47 87.02 534 2.57 487 86.92 96 2.47 48
Part 9 81.25 58 82.13 517 0.88 459 81.48 96 0.23 37
Part 10 85.47 47 86.52 432 1.05 385 86.37 86 0.90 39
Part 11 87.73 29 89.74 307 2.02 278 89.74 72 2.02 43
Part 12 78.15 56 80.22 463 2.06 408 79.19 91 1.04 35
Part 13 84.17 51 86.03 470 1.86 420 85.73 86 1.57 35
Part 14 78.01 56 80.22 482 2.21 426 78.92 98 0.91 42
Part 15 72.42 97 74.13 1122 1.71 1025 73.13 159 0.71 62

MIPT, MIPTheory; AFR, allocation fill rate; Avg, Average; MIPA, MIPActual.
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Appendix 1
Import supplier model
BO_Accum(t) = BO_Accum(t - dt) + (BO - BO_Send_to) * dt
INIT BO_Accum = 0
DOCUMENT: Back Ordered pieces waiting for the shipment cycle.
INFLOWS:
BO = Demand-Shipped
DOCUMENT: Back Order pieces allocated for shipping. This is the difference between demand and available stock.
OUTFLOWS:
BO_Send_to = if time/Shipment_Cycle=int(time/Shipment_Cycle) then BO_Accum/dt else 0
DOCUMENT: Back Order pieces loaded onto the ship for departure.
In_Stock(t) = In_Stock(t - dt) + (Arrive - Shipped) * dt
INIT In_Stock = Starting_Stock_Days
DOCUMENT: Inventory pieces in stock at the distribution centre.
INFLOWS:
Arrive = CONVEYOR OUTFLOW
DOCUMENT: Pieces of stock arriving at the distribution centre.
OUTFLOWS:
Shipped = Demand
DOCUMENT: Pieces shipped to clients.
MIP(t) = MIP(t - dt) + (MIP_New - MIP_Refresh) * dt
INIT MIP = MIP_Calculation
DOCUMENT: Storing of monthly MIP review.
INFLOWS:
MIP_New = if MIP_Refresh>0 then (MIP_Calculation)/dt else 0
DOCUMENT: Monthly MIP update - data inflow.
OUTFLOWS:
MIP_Refresh = if time/28 = int(time/28) then MIP/dt else 0
DOCUMENT: Monthly MIP update - data clean out.
Order_Accum(t) = Order_Accum(t - dt) + (Produced - Send_to) * dt
INIT Order_Accum = 0
DOCUMENT: Processed pieces, waiting for ship departures.
INFLOWS:
Produced = MIP_Based_Order
DOCUMENT: Order processing rate.
OUTFLOWS:
Send_to = if time/Shipment_Cycle=int(time/Shipment_Cycle) then Order_Accum/dt else 0
DOCUMENT: Loading of pieces on ship, based on shipment cycle.
BO_en_Route(t) = BO_en_Route(t - dt) + (BO_Send_to - BO_Shipped) * dt
INIT BO_en_Route = 0
	 TRANSIT TIME = 1
	 CAPACITY = INF
	 INFLOW LIMIT = INF
DOCUMENT: Back Ordered pieces en route to the client.
INFLOWS:
BO_Send_to = if time/Shipment_Cycle=int(time/Shipment_Cycle) then BO_Accum/dt else 0
DOCUMENT: Back Order pieces loaded onto the ship for departure.
OUTFLOWS:
BO_Shipped = CONVEYOR OUTFLOW
DOCUMENT: Back Order pieces shipped to the client.
Orders_en_Route(t) = Orders_en_Route(t - dt) + (Send_to - Arrive) * dt
INIT Orders_en_Route = 0
	 TRANSIT TIME = Order_Lead_Time
	 CAPACITY = INF
	 INFLOW LIMIT = INF
DOCUMENT: Pieces of stock en route.
INFLOWS:
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Send_to = if time/Shipment_Cycle=int(time/Shipment_Cycle) then Order_Accum/dt else 0
DOCUMENT: Loading of pieces on ship, based on shipment cycle.
OUTFLOWS:
Arrive = CONVEYOR OUTFLOW
DOCUMENT: Pieces of stock arriving at the distribution centre.
Total_Allocation(t) = Total_Allocation(t - dt) + (Flow_1 - Flow_2) * dt
INIT Total_Allocation = 0
	 TRANSIT TIME = Days_per_Month
	 CAPACITY = INF
	 INFLOW LIMIT = INF
DOCUMENT: Consolidation of stock availability data for AFR calculation.
INFLOWS:
Flow_1 = Allocation
DOCUMENT: Allocation data inflow.
OUTFLOWS:
Flow_2 = CONVEYOR OUTFLOW
DOCUMENT: Allocation data outflow.
Allocation = Shipped/Demand
DOCUMENT: Immediate stock availability information.
Avg_Allocation = Total_Allocation/Days_per_Month*100
DOCUMENT: Allocation Fill Rate (AFR) calculation.
Base_Demand = 100
DOCUMENT: Average value of the number of pieces demanded on a daily basis.
Base_Lead_Time = 63
DOCUMENT: Average lead time.
BO_Lead_Time = 7
DOCUMENT: Lead Time used to supply Back Orders.
Days_per_Month = 30
DOCUMENT: Standard days per month to calculate AFR.
Demand = normal(Base_Demand,Demand_Variance)
DOCUMENT: Demand in pieces calculated as a normal distribution with Base Demand as average and demand variance as the Standard 
Deviation - Normal(Base Demand,demand variance).
Demand_Variance = 0
DOCUMENT: Demand variance.
MIP_Based_Order = max(0,MIP-Orders_en_Route-In_Stock-BO_en_Route-Order_Accum-BO_Accum)
DOCUMENT: Order placement as per MIP method.
MIP_Calculation = Base_Demand*(Shipment_Cycle+(Order_Cycle_Days)+Base_Lead_Time+2*Order_Lead_Time_variance+2*Demand_
Variance*Base_Demand)
DOCUMENT: Calculation of MIP, based on demand, demand variance, lead time and lead time variance.
Order_Cycle_Days = 1
DOCUMENT: The frequency of orders. For daily orders this value is set at 1.
Order_Flow = Produced+BO
DOCUMENT: Calculation for confirming total order flow is the same as demand.
Order_Lead_Time = max(Base_Lead_Time,normal(Base_Lead_Time,Order_Lead_Time_variance))
DOCUMENT: Order lead time calculated as a normal distribution of average lead time and order lead time variance.
Order_Lead_Time_variance = 0
DOCUMENT: Order variance lead time.
Run_Counter = 50
DOCUMENT: Dummy variable used to set the number of simulation runs to be completed.
Shipment_Cycle = 7
DOCUMENT: Frequency of ship departures.
Starting_Stock_Days = MIP_Calculation
DOCUMENT: Initial stock value.
Stock_Days = In_Stock/Demand
DOCUMENT: Calculation of Stock Coverage - Stock/Demand.
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